Polarization transfer via field sweeping in parahydrogen-enhanced nuclear magnetic resonance
نویسندگان
چکیده
منابع مشابه
Parahydrogen-enhanced zero-field nuclear magnetic resonance
Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth’s magnetic field a...
متن کاملFundamental aspects of parahydrogen enhanced low-field nuclear magnetic resonance.
We report new phenomena in low-field 1H nuclear magnetic resonance (NMR) spectroscopy using parahydrogen induced polarization (PHIP), enabling determination of chemical shift differences, δν, and the scalar coupling constant J. NMR experiments performed with thermal polarization in millitesla magnetic fields do not allow the determination of scalar coupling constants for homonuclear coupled spi...
متن کاملParahydrogen-induced polarization at zero magnetic field.
We use symmetry arguments and simple model systems to describe the conversion of the singlet state of parahydrogen into an oscillating sample magnetization at zero magnetic field. During an initial period of free evolution governed by the scalar-coupling Hamiltonian HJ, the singlet state is converted into scalar spin order involving spins throughout the molecule. A short dc pulse along the z ax...
متن کاملTransfer of Parahydrogen-Induced Polarization to 19F:
Introduction Parahydrogen-Induced Polarization (PHIP) leads to strong signal enhancement in H-NMR if unsaturated substrates are hydrogenated with parahydrogen (p-H2) applying an appropriate catalyst. As shown before, this polarization can be transferred to heteronuclei such as C. For imaging the lung, a F-hyperpolarized contrast agent should be available, if possible for inhalation. Normally, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2019
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.5089486